
Lecture 06: Software management or “How I Learned to Stop Worrying and 
Love APT” Part 2
Hands-on Unix system administration DeCal 
2012-10-08

Make install sucks:
• not guaranteed to work consistently
• takes time (human and computational)
• disorganized

◦ many files install to /usr/local, but not always, can install anywhere on 
system, and possibly overwrite or interfere with other things

◦ What is installed? And what version? What installed software is vulnerable 
to a exploit? What software has a major bug?

• make uninstall target doesn't always exist or work cleanly
◦ need to keep copy of source

Dependency hell:
• many dependencies, tedious

◦ chains of dependencies (dependencies have dependencies themselves)
• conflicting dependencies

◦ different versions and variants which may be incompatible, but no specific 
“canonical” documentation

• circular dependencies (dependencies may be dependent on original software)

Upgrading compounds problems:
• you need to keep track of updates (security updates and bugfixes)  so –

knowing what is installed, what versions, which vulnerable, is important
• you need to again install fetch, compile, and deal with dependency hell
• you need to ensure compatibility during update, update other software at the 

same time, and pray nothing breaks

Package management:
• Unix distribution provides a central repository of packages each with a 

different name
• packages can be source packages which are meant to be compiled during 

installation or binary which have already been compiled
• packages are maintained according to a policy manual

◦ “upstream” is modified as necessary to ensure combinations of packages are 
compatible and act consistently

• metadata associated with each package identifies version, dependencies, 
checksum/signature

• package manager handles installing, smart upgrading (order of operations), 
configuring, and removing software

• blurs the boundaries between operating system and applications  OS is itself–  
a bunch of packages

• saves disk space and memory space because software can use shared libraries
• possibly the greatest feature of Unix distributions, especially GNU/Linux



As compared with an installer (“Windows”):
• package management: single installation database managed the same way by 

operating system
• installer: each program manages its own installation in inconsistent ways, 

possibly recording this information its own format
• installers tend to be buggier, but more up-to-date since they are prepared as 

part of the “upstream” software
• package managers can keep track of all installed software, find updates, make 

clean removals, but they can lag behind, which is not necessarily a bad thing 
(with features come bugs)

• Microsoft now recommends MSI (Windows Installer format), which is a package 
system without the central repository to fetch, install, and update from

Debian package management:
• robust package management introduced in 1993 with Debian, a GNU/Linux 

distribution  the universal OS (flexible and powerful)–
• source and binary packages: you can modify source packages, and build binary 

packages (*.deb archives) for different architectures and kernels, which are 
actually used for fast and clean installations

• types of dependencies (by name and version)
◦ build: required dependencies for compiling source packages (e.g., gcc)
◦ depends: required dependencies for installations (e.g., libc)
◦ recommends: recommended dependencies (apt/aptitude installs by default)
◦ suggests: suggested packages
◦ also breaks, conflicts, provides, replaces

• different package versions for different releases of Debian OS
◦ upgrade from release to release by upgrading packages

• dpkg: low-level Debian package manager and package format
• aptitude/apt: add networked capability to search, fetch, and install or 

upgrade from packages available through the Debian archives specified in 
source.list file

Why compile:
• even with binary package management, you may need a newer version which is 

unavailable (hasn't yet been packaged) or you may need to apply a patch for  
further customization or bugfixes

• packaging software, i.e., developing packages, involves compiling software, 
then more, so Debian developers know dependency hell well to save us from it

Software freedom:
• software that can be freely run, studied, modified, adapted, improved, 

copied, distributed, and redistributed 
• in contrast, proprietary software is restricted by copyright and contracts 

(NDAs, EULAs)
• aka open source, access to source code is a prerequisite
• package management “depends” on free software because software is packaged 

and patched in source form, can be compiled for desired architecture, with 
shared libraries, etc.



Useful commands:
• dpkg -i: install a Debian binary package file (typically handled through 

aptitude)
• dpkg -l: list all managed packages or specified package (does not include 

available packages, those are not handled by low-level dpkg), status, and 
version

• dpkg -L: list files installed (provided by) from specified package
• dpkg -S: find package which provides a file
• aptitude update: update local cache of available packages
• aptitude upgrade: fetch and upgrade to latest available all or specified 

packages (run aptitude update to update cache first)
• aptitude install: fetch and install package from repository


