
Advanced Unix System Administration

Spring 2008

Homework 1 Solutions

1. Tracing a running process. This exercise must be done on the login server. Among
the files for this week’s assignment is wrapper, which forks off a child process to
perform some tasks.

a. Run this program and observe its behavior. Now try tracing it with strace.
Does the program do the same thing? If not, why not?

We get the following output:

sh-3.1$ ./wrapper

Forked background process, pid 22187

This doesn’t tell us much.

When tracing the program, though, we get the following output:

sh-3.1$ strace -f -o /tmp/strace.out ./wrapper

Incorrect gid -- go away

Why? A look at the binary tells us that the program is setgid:

-rwx--s--x 1 sluo sluo 10272 2008-02-24 15:30 wrapper

A setgid program will be run as the group owning the binary, not as the group
of the user running the binary (we’ll talk more about this later in the class).
For now, all you need to know is that you cannot trace a setuid or setgid
program for security reasons; the kernel ignores the setuid or setgid bit when
executing the program, to prevent you from seeing information you shouldn’t.

b. Attach to the child process using strace. Describe in detail what the program
is doing or trying to do, and the errors it is getting.

The process seems to be doing this over and over again:

sh-3.1$ strace -p 30719

[snip]

lseek(3, 256, SEEK_SET) = 256

read(3, "V\v\32\2438\34d@"..., 127) = 127

open("/etc/shadow", O_RDONLY) = -1 EACCES

(Permission denied)

open("/home/sluo/foobarbaz", O_RDONLY) = -1 ENOENT

(No such file or directory)

lseek(4, 256, SEEK_SET) = -1 ESPIPE

(Illegal seek)

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

1



rt_sigaction(SIGCHLD, NULL, {SIG_DFL}, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

nanosleep({5, 0}, {5, 0}) = 0

[snip]

It’s seeking to byte 256 on file descriptor 3 (whatever that is), and reading 127
bytes from that file. It then attempts to open /etc/shadow for reading, which
fails with “Permission denied”, since /etc/shadow isn’t readable by ordinary
users. It then tries to open /home/sluo/foobarbaz for reading, which fails
because the file doesn’t exist. It then tries to seek to byte 64 on file descriptor
4, which fails because file descriptor 4 is a named pipe and seeking on pipes
isn’t permitted. After that, it sleeps for 5 seconds, and repeats.

Notice how strace is nice enough to show you what pointers passed as argu-
ments to syscalls point to, and to print out error numbers (and their descrip-
tions!) when errors occur. This is unfortunately more than can be said for
some of the other tracing tools you’ll come across.

c. What files does the process have open? Identify the file descriptors that were
referred to in the strace output.

Using lsof, we see the following at the bottom of the output:

sh-3.1$ lsof -p 30719

[snip]

read 30719 nobody 0u CHR 136,0 2

/dev/pts/0

read 30719 nobody 1u CHR 136,0 2

/dev/pts/0

read 30719 nobody 2u CHR 136,0 2

/dev/pts/0

read 30719 nobody 3r REG 22,1 1024 99084

/home/sluo/hw1-files/random

read 30719 nobody 4r FIFO 22,1 99083

/home/sluo/hw1-files/fifo

The process has our tty open on file descriptors 0, 1, and 2. File descriptor
3 is /home/sluo/hw1-files/random (which I made by taking 1024 bytes out
of /dev/urandom), while file descriptor 4 is /home/sluo/hw1-files/fifo, a
named pipe (as expected).

d. What did wrapper’s child process do after the call to fork()? (This might take
a bit of thought and man page reading, but you do have enough information
to answer this question, assuming you already did the first three parts of the
problem.)

Above the files in the lsof output, we see the following:

read 30719 nobody txt REG 22,1 9736 99081

2



/home/sluo/hw1-files/private/read

From the lsof man page, we see that the txt under the FD field means
“program text (code and data)”; in other words, this is the file containing the
code of the running program. We therefore conclude that wrapper invokes
/home/sluo/hw1-files/private/read after the fork().

2. Examining the process scheduler. Here’s an exercise looking at scheduling processes
with different nice levels. Do not run these examples on multi-user machines.

a. Examine, compile, and run forkloop.c and forkloop-io.c, which fork child
processes until they are interrupted by a signal or reach a cap on the total
number of processes created. (Don’t worry if you don’t understand the C; the
comments say everything you need to know about the operation of these two
programs.) What distinguishes these two programs?

forkloop’s children simply (attempt to) compute the factorial of their process
ID, while forkloop-io’s children read from a file on disk as well.

b. Run two copies of forkloop simultaneously with the same priority (see the
script run1). Do they share the CPU roughly equally? What about with one
copy running at lower priority (see script run2)?

sluo@tempest:~/hw1-files$ ./run1

5076: priority 0

5075: priority 0

5076: forked 2461 processes total

5075: forked 2446 processes total

sluo@tempest:~/hw1-files$ ./run2

31876: priority 0

31877: priority 10

31876: forked 3116 processes total

31877: forked 2517 processes total

Unsurprisingly, two forkloops running with the same priority share the CPU
roughly equally, while the copy with lower priority suffers when the two are
run with different priorities.

c. Run forkloop and forkloop-io simultaneously with the same priority (see
script run3). Do they share the CPU equally? What happens when you lower
the priority of forkloop? Why?

sluo@tempest:~/hw1-files$ ./run3 big-file

24249: priority 0

24248: priority 0

24249: forked 793 processes total

24248: forked 481 processes total

3



sluo@tempest:~/hw1-files$ ./run4 big-file

25524: priority 0

25525: priority 10

25524: forked 475 processes total

25525: forked 847 processes total

Looking at run3 and run4, we see that run3 runs forkloop first before doing an
exec() of forkloop-io, while run4 runs forkloop at the lower priority. Using
this information to distinguish the two programs in the output, we see that the
forkloop-io process runs less frequently than the forkloop process does, and
this remains true when the priority of the forkloop process is lowered. This
happens because forkloop-io spends time blocking for I/O, and processes
that are blocked cannot be scheduled.

3. The load average. If you watched the output of top and/or uptime while running
the forkloop examples, you probably noticed that the load average numbers spiked
while they were running.

a. How is this load average computed?

The load average is an exponentially-damped moving average of the length of
the run queue over the past m minutes (where load is usually computed for
m = 1, m = 5, and m = 15). On Linux systems, the exact formula for the
one-minute load average is

Li = Li−1e
−5/60 + n

(

1 − e
−5/60

)

where Li is the current load average, Li−1 was the load average at the previous
sampling point, and n is the length of the run queue. See
http://www.teamquest.com/resources/gunther/display/5/index.htm

(the source for this formula) for a bit of analysis on these figures.

b. What is the “full utilization” load average for an n-processor machine? Why?

The full utilization load for an n-processor machine (by “processor”, we mean
any physical hardware capable of having a thread scheduled on it, be it a
processor in a socket, one core among many in a processor, or a processor with
HyperThreading) is simply n. The run queue gives us the number of processes
that are trying to run at any moment; on a system that’s being fully utilized
(but not overloaded), this should be equal to the number of processes that can
actually be run at once.

c. Suppose you have a system with only one process running. What are the
minimum and maximum load averages possible, and why?

The maximum load average in this situation is 1, since on a system with only
one process running, the longest the run queue can get is one process. (In
practice, the maximum load average would be achieved if this process were

4



always ready to run – i.e. never slept or blocked for I/O.) The minimum load
average is of course 0 (indicating the process has been sleeping or blocked all
the time recently).

d. Optional. Suggest a small change or two to forkloop.c that would maximize
the load average spike produced by running it. You do not need to test your
change(s) (and you don’t want to, unless you have a system that you are willing
to hard reset afterward).

There are (at least) two possible changes here. You could let each child fork
its own children, instead of only letting the parent create child processes. This
lets the number of processes grow exponentially, instead of linearly, with time.
You could also remove the sleep(1) that the children perform, which would
make the child processes compete much more actively to run, making the run
queue longer.

4. Memory overcommit and out-of-memory behavior. Note: Do not try this exercise

on production machines. From tempest, SSH into 10.20.0.11 (the RSA host key
fingerprint is 96:d8:56:84:b9:14:bc:b3:f8:27:fd:c1:6d:e4:bd:b4); use your
tempest login and password. This is a virtual machine configured with 128 MB
of RAM and no swap.

On this host, compile and run malloc3.c; this is similar to the malloc2.c demon-
strated in class, but allocates all of the memory it desires before attempting to write
to any of it.

a. What happens when you run this program?

sluo@adv-hw1-1:~$ ./malloc3

Succeeded in allocating 20 MB of RAM

Succeeded in allocating 40 MB of RAM

Succeeded in allocating 60 MB of RAM

Succeeded in allocating 80 MB of RAM

Succeeded in allocating 100 MB of RAM

Succeeded in allocating 120 MB of RAM

Succeeded in allocating 140 MB of RAM

Succeeded in allocating 160 MB of RAM

Succeeded in writing to 20 MB of RAM

Succeeded in writing to 40 MB of RAM

Succeeded in writing to 60 MB of RAM

Succeeded in writing to 80 MB of RAM

Killed

The program is killed when the system runs out of memory. Examination of
the kernel messages using dmesg shows

5



oom-killer: gfp_mask=0x280d2, order=0

Call Trace:

[way too much debugging output and memory info removed]

Out of Memory: Kill process 2988 (malloc3) score 41594

and children.

Out of memory: Killed process 2988 (malloc3).

The out-of-memory killer, which activates when there’s no more physical mem-
ory to be had and nothing can be pushed out to swap, assigns each process a
score based on factors such as memory usage, and kills the one with the highest
score.

Why did the system allocate so much memory in the first place (remember, we
only have 128 MB of RAM and no swap)? The Linux VM system overcommits
memory – that is, it’s willing to allocate memory beyond the amount of physical
RAM and swap available to a certain point, in the expectation that not all
allocated memory ends up being used. This reduces the need to swap to disk
and/or deny memory allocations, improving performance.

b. Can you imagine scenarios where this behavior might affect a process other
than the one writing to memory at the time the out-of-memory condition
occurs?

The primary risk from the out-of-memory killer comes when no one process is
hogging memory and piling up a big score. In such cases, it’s possible that the
victim could be an innocent bystander, perhaps an important system daemon
whose killing would leave the system effectively inoperable. (No, init won’t
be killed under any circumstances, but on a system with no console access, the
death of sshd effectively leaves the system inaccessible, for instance.)

c. Try increasing the number of blocks the program tries to allocate (change the
value BLOCKS is #defined to be). Can you reach a point where the memory
allocation fails? Try increasing the block size (BLOCK_SIZE). Can you reach a
point where the memory allocation fails? Explain your results.

Even with #define BLOCKS 1024, but the same BLOCK_SIZE (in other words,
trying to allocate 20 GB of RAM in 20 MB blocks), the memory allocations
all succeed. However, choosing BLOCK_SIZE larger than about 20-30 (80-120
MB; your results may vary, depending on exactly how much memory is in use
on the system at the moment) results in the memory allocation failing.

Why? The VM only looks at the allocation size in comparison to the free (as
in unused, not unallocated) memory. Hence 20 MB allocations continue to
succeed, because the system has more than 20 MB unused memory available,
but 120 MB allocations fail.

6



d. In situations where the consequences of overcommitting memory are unaccept-
able, how would you go about disabling this on your Linux system? What
would be some of the other effects of this change?

The malloc() man page tells us that we can disable memory overcommit in the
kernel by writing the value 2 to /proc/sys/kernel/vm/overcommit memory.
vm/overcommit-accounting in the kernel documentation (see any Linux ker-
nel source tree, or /usr/share/doc/linux-doc-2.6.18 on the login server)
tells us that this means that “The total address space commit for the system
is not permitted to exceed swap + a configurable percentage (default is 50) of
physical RAM”.

Disabling memory overcommit will increase swap usage when the system is
busy, thus decreasing system performance. Applications may also run slower
if they could have made use of large sparse memory allocations.

e. Optional. If you have a Linux machine where you have root access, try malloc3

with the configuration change from part (d). Use the machine for other tasks,
and try to use up lots of memory; do you notice any effect on your system’s
performance and behavior? If so, were they effects you predicted?

5. VM behavior. From tempest, SSH into 10.20.0.12 (the RSA host key fingerprint is
18:46:4a:3c:13:01:9a:a7:47:55:ab:10:be:c6:22:c7); use your tempest login
and password. This is a virtual machine configured with 64 MB of RAM and 64
MB of swap.

a. Create a large file (say, with dd). Find its SHA1 sum twice, timing it each time.
Run malloc3 from the previous problem, then time the SHA1 sum operation
again. What results do you get? Can you explain them?

sluo@adv-hw1-2:~$ dd if=/dev/zero of=big-file bs=24M count=1

1+0 records in

1+0 records out

25165824 bytes (25 MB) copied, 0.086758 seconds, 290 MB/s

sluo@adv-hw1-2:~$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.181s

user 0m0.160s

sys 0m0.020s

sluo@adv-hw1-2:~$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.180s

user 0m0.164s

sys 0m0.016s

7



sluo@adv-hw1-2:~$ ./malloc3

[output removed]

sluo@adv-hw1-2:~$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.632s

user 0m0.092s

sys 0m0.008s

The first two SHA1 hash operations are fast, but the last one is considerably
slower. This is because of the kernel’s caching of data; when you create the
file or read it, the kernel caches the result, in anticipation of future use of that
data. Thus the first two SHA1 hashes operate entirely in memory. The cached
data is pushed out when malloc3 creates memory pressure, so the last SHA1
operation has to read all of the file back in from disk.

b. Compile malloc4.c, which acquires and uses lots of memory, then goes to sleep
until interrupted by SIGHUP, at which point it rereads all the memory it used.
Run the program alone, send SIGHUP as soon as possible, and observe how
long it says the memory reread takes. (You may need to run it a few times
to get repeatable results.) Run it again, and this time run malloc3 before
sending SIGHUP. How long does it take this time? Why the difference?

We see the following:

[window 1]

sluo@adv-hw1-2:~ [1]$ ./malloc4

Succeeded in allocating 4 MB of RAM

Succeeded in allocating 8 MB of RAM

Succeeded in allocating 12 MB of RAM

Succeeded in allocating 16 MB of RAM

Succeeded in allocating 20 MB of RAM

Succeeded in allocating 24 MB of RAM

Succeeded in writing to 4 MB of RAM

Succeeded in writing to 8 MB of RAM

Succeeded in writing to 12 MB of RAM

Succeeded in writing to 16 MB of RAM

Succeeded in writing to 20 MB of RAM

Succeeded in writing to 24 MB of RAM

Sleeping until SIGHUP is received

[window 2]

sluo@adv-hw1-2:~ [2]$ pkill -HUP malloc4

[window 1]

8



Continuing.

Done -- reread took 20058 us.

Sleeping until SIGHUP is received

[window 2]

sluo@adv-hw1-2:~ [2]$ ./malloc3

[output removed]

sluo@adv-hw1-2:~ [2]$ pkill -HUP malloc4

[window 1]

Continuing.

Done -- reread took 889610 us.

The first reread is extremely fast, whereas the second is considerably slower.
Running malloc3 before triggering the second reread pushes malloc4’s mem-
ory to swap, so the second reread needs to pull this memory back in from
disk.

c. Start by compiling malloc5.c (which behaves like malloc3, except it uses less
memory), then creating a file about 24 MB or so in size. Run malloc3, then
malloc4. While malloc4 is sleeping, find the SHA1 sum of the 24 MB file a
few times, timing it each time. Run malloc5. Time a few more SHA1 sums of
the 24 MB file, then send SIGHUP to malloc4 and note how long it takes to
reread its memory.

Repeat the above exercise, except this time, after running malloc5, send
SIGHUP to malloc4 before timing the SHA1 sums.

Explain what’s happening at each step of these two scenarios, and the differ-
ences between the two. (Hint: top may be useful to you here.)

[window 1]

sluo@adv-hw1-2:~ [1]$ ./malloc3

[output removed]

sluo@adv-hw1-2:~ [1]$ ./malloc4

[snip]

Sleeping until SIGHUP is received

[window 2]

sluo@adv-hw1-2:~ [2]$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.632s

user 0m0.208s

sys 0m0.040s

sluo@adv-hw1-2:~ [2]$ time sha1sum big-file

9



f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.605s

user 0m0.084s

sys 0m0.032s

sluo@adv-hw1-2:~ [2]$ ./malloc5

Succeeded in allocating 4 MB of RAM

Succeeded in allocating 8 MB of RAM

Succeeded in allocating 12 MB of RAM

Succeeded in allocating 16 MB of RAM

Succeeded in allocating 20 MB of RAM

Succeeded in allocating 24 MB of RAM

Succeeded in writing to 4 MB of RAM

Succeeded in writing to 8 MB of RAM

Succeeded in writing to 12 MB of RAM

Succeeded in writing to 16 MB of RAM

Succeeded in writing to 20 MB of RAM

Succeeded in writing to 24 MB of RAM

sluo@adv-hw1-2:~ [2]$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.950s

user 0m0.080s

sys 0m0.024s

sluo@adv-hw1-2:~ [2]$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.181s

user 0m0.152s

sys 0m0.028s

sluo@adv-hw1-2:~ [2]$ pkill -HUP malloc4

[window 1]

Continuing.

Done -- reread took 1058257 us.

The initial malloc3 pushes everything not currently in use out of physical
memory, thereby freeing up a big chunk for what follows. (We’ll be using it
for this sort of thing again in the future.) The malloc4 then hogs some chunk
of that memory, enough that big-file can’t be resident in cache; hence the
SHA1 sums run slowly. malloc5 uses 24 MB of RAM before quitting, thereby
pushing out part of malloc4’s memory. The first SHA1 sum needs to load
in the code for sha1sum again, as well as all of the contents of the file, so it

10



runs even more slowly than before; however, with a 24 MB chunk of memory
free, the entire contents of the file can be cached, so the second SHA1 sum
runs quickly. malloc4’s reread of memory is slow because it has to pull in its
memory from swap.

If we trigger the reread of memory from malloc4 before trying the SHA1 sum:

[window 2]

sluo@adv-hw1-2:~ [2]$ ./malloc5

[output removed]

sluo@adv-hw1-2:~ [2]$ pkill -HUP malloc4

[window 1]

Continuing.

Done -- reread took 572148 us.

Sleeping until SIGHUP is received

[window 2]

sluo@adv-hw1-2:~ [2]$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m1.179s

user 0m0.060s

sys 0m0.016s

sluo@adv-hw1-2:~ [2]$ time sha1sum big-file

f13b36769904213001eb97475213960fae3120bb big-file

real 0m0.519s

user 0m0.088s

sys 0m0.028s

malloc4’s reread is slow, but not as slow as last time, which suggests that
not all of its memory got pushed out to swap. Indeed, if you had top open,
and were sorting the output by memory usage (press ’O’ to bring up the sort
options, and then press ’n’ to sort by memory use), you’d have seen malloc4’s
memory usage drop – but not all the way down – confirming this suspicion.
Meanwhile, the second SHA1 sum is slow, but again, not as slow as before –
suggesting that at least a part of the file is getting into the cache this time.

Particularly on this last part of the exercise, your results may (and probably
will) vary, since the VM heuristics depend in part on how recently a page was
used. What I’m looking for is a good explanation of what’s happening on the
system, not this particular set of results.

11


