

Advanced Unix System
Administration

Lecture 2
September 17, 2008

Steven Luo
<sluo+decal@OCF.Berkeley.EDU>

Administrative Stuff

● I've set up a mailing list for the class
– sluo+decalfa08@OCF
– Feel free to use it to contact each other
– If you don't get email from the list, let me

know!

● These slides will be posted on website
– http://www.ocf/sysadmin-class/2008-

fall/advanced/

Processes

● In some sense, the process is the
“fundamental actor” on a Unix system
– Everything that happens on the system is

done by or for a process
– Most of the attributes and resources that the

system assigns or keeps track of belong to a
process in some way or another

– Users interact with the system via their
processes

Processes

● Processes in the kernel
– Each process is assigned a process ID

number (PID)
– Kernel keeps a huge amount of state per

process: priority, whether blocked or not,
owning user and group, permissions,
execution state, etc.

– (Linux) Pointers to these structures are
stored in a hash table hashed by PID and in a
linked list

Processes

● Process creation
– fork() and friends – creates a copy of the

parent
– If a new program is being invoked, a

following call to one of exec family of
functions will overwrite the address space
with the code of the new program

– Dynamic binaries: the dynamic linker loads
code (more later)

– Start of program execution

Processes

● strace(1), truss(1), ktrace(1)
– Provides a view of the syscalls used by a

program
– Can be run on new processes, follow their

children, or be attached to an existing
process

– Output is valuable when process is doing I/O,
sleeping, or otherwise talking to the kernel;
of no use when purely userspace

– Can filter out selected syscalls – useful
because output is very noisy

Processes

● The process tree
– Every process has a parent – the process

from which it fork()ed
– Parent has privileges (and responsibilities)

with regards its children
– Parent and children form a process group,

which has an ID number (usually parent's
PID)

– The start of the process tree is init (always
PID 1)

– Orphaned processes are inherited by init

Processes

● Scheduling
– On most systems, there is a “run queue” or

“ready queue” of processes that are not
blocked

– Kernel looks at processes to see which aren't
blocked

– Dispatcher looks at processes in run queue
and decides which one runs next and for how
long

– When time's up, dispatcher stops the running
process and performs the context switch

Processes

● Scheduling considerations
– Priority: higher-priority tasks should run more

often
– Starvation: processes that haven't run in a

long time should run
– (SMP systems) Processor affinity
– Locks held by processes; priority inversion
– Different workloads benefit from different

algorithms for sorting this out

Processes

● Signals
– Allow processes to communicate with each

other and the kernel
– Provide primitive mechanism for

implementing callbacks – signals can be
trapped and a “signal handler” called

– If not handled, signals perform a default
action (usually exit)

– Signal programming is tricky because of
synchronization and syscall restarting issues

– Try `man kill` or `kill -L` for more information

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

