Chapter 3

The Filesystem

If your going to be a good system administrator, you need to know something
about the filesystem. If you are coming from a Windows system, you will
notice several significant differences in the way the filesystem is laid out. While
this may be confusing at first, you will find that these conventions will make
administering your system easier.

3.1 File Types

One of the unique things about the UNIX file system is that everything is
represented as a file. Files can be divided into three major categories: regular
files, directory files, and device files (there are actually several other types
of special files, some of which we will talk about later).

3.1.1 Regular Files

A regular file is the category most files fall under. They are plain files that
contain text or binary data and are stored on a physical device (like a cd, hard
drive, usb key, etc.).

3.1.2 Directory Files

A directory file is a special file used to organize files. A directory does not
contain regular data like regular files, but instead contains information about
the files in that directory. Basically, it contains a list of files (of any type) along
with the file’s inode number. Inodes will be discussed later, but for now, think
of them as a unique identification number for files in the file system.

3.1.3 Device Files

A device file is a special file that is used to interact with physical devices
attached to the system. They aren’t physically stored anywhere and exist only

in memory. When you write to or read from a device file, you are interacting with
a physical device. For example, the file /dev/hdal is the device that represents
your first hard drive partition. There are some device files (like /dev/null)
that don’t actually correspond to physical devices. These are called pseudo-
devices.

3.2 File Names

Unlike Windows, there are very little restrictions placed on what you name your
files. The name must be less than 255 characters, but other than that, you are
free to name it what you want. That being said, there are several things to keep
in mind.

3.2.1 File Extensions

File extensions are not required in UNIX. You can name a text file data. jpg
if you really wanted to, but you really shouldn’t. The file extensions make it
easier for you to tell whats in the file. If you are not sure about a file type or
want to confirm, you can use the file command. file performs tests on the file
data instead of checking the file name. For example:

aoaks@tsunami:~$ cp hw2.pdf hw2.txt
aoaks@tsunami:~$ cp hw2.pdf hw2
aoaks@tsunami:~$ file hw2x

hw2: PDF document, version 1.4
hw2.pdf: PDF document, version 1.4
hw2.txt: PDF document, version 1.4

Notice that even though the file name has been changed, and even dropped, file
still determines the actual file type correctly.

3.2.2 Special Characters

You can put whatever you want in your filenames, even shell special characters
(with the exception of the ¢/’ character and ‘\ 0’ the null character). While
you are technically allowed to, you should really try not to use these characters.
Every time you need to use the file, you will need to escape all of the special
characters in the name (this means spaces too, which is why, as you will see,
none of the system directories have spaces in them). You should definitely never
use the -” (hyphen) at the beginning of a filename. When you type it in, it will
be interpreted as an option to whatever command you are using. The ’-’ is not
a shell special character, so you can’t simply escape it either. The best way to
deal with it is to not do it.

3.2.3 Hidden Files

The 1s command will show you the contents of the current directory. However,
just like in other operating systems, there are files that you don’t always want
displayed (for example, configuration files). In UNIX, to make a file hidden,
start its filename with a ‘.’ (period). To show hidden files, use ls with the ‘-a’
or ‘-A’ option (if you are curious about the difference between them, read the
man page). For example:

aoaks@tsunami:~/wallpaper$ 1ls

niceview. jpg

goldengatebridge. jpg

aoaks@tsunami:~/wallpaper$ mv niceview.jpg .niceview.jpg
aoaks@tsunami:~/wallpaper$ 1s

goldengatebridge. jpg

aoaks@tsunami:~/wallpaper$ 1ls -A

.niceview. jpg

goldengatebridge. jpg

3.2.4 Case Sensitivity

File names in UNIX are case sensitive. Therefore, you can have several files
in the same directory with the same name, so long as their capitalizations are
different. For example the following is perfectly legal:

aoaks@tsunami:~/case$ 1s
data Data DATA

While such things are allowed, they are general avoided because it makes things
unnecessarily confusing.

3.3 Filesystem Structure

Like most other operating systems, UNIX uses a hierarchical directory structure.
Each mounted filesystem has a root (top level) directory which contains files and
subdirectories. What throws most people coming from an operating system like
windows is the way the filesystems are mounted. On Windows, each filesystem
mounted on the system is assigned its own drive letter (like C:, D:, etc) and
the file system is mounted under it. In this system, the root directory of each
partition is accessed through the different drive letters. For example C:\ would
be the root directory on the main filesystem, D:\ would be the root directory
on the second file system, etc.

UNIX handles mounted in a different fashion. In UNIX, everything is ac-
cessed under a single filesystem, and individual file systems are mounted at
mount points. A mount point is the directory in the main file system where
you attach the root directory of another filesystem. The main filesystem is

mounted on the root directory and is appropriately named the root filesys-
tem. All other file systems are mounted on directories under the root directory.
For example, /dev, /proc, and /tmp are actually each separate filesystems. At
boot, their root directories are mounted at their respective mount points.

3.4 Directory Structure

The UNIX directory structure is set up so that similar data is stored together.
Let’s look at some of the directories in the root directory, looking at what the
directory names mean and what they contain. These folders are based on a
convention in Linux called the Filesystem Hierarchy Standard.

/bin (Binaries) This is where main program binaries are located. Most of the
commands without specifying a path are located in a bin directory.

/sbin (System Binaries) This is where programs used for maintenance or ad-
ministrative tasks are stored. These are not usually used by anybody other than
the system administrator, both because their use is limited to administrative
task and because many of them are only usable as the system administrator.

/home (Home Directories) This is where each user’s home directory is stored.
Each user gets a home directory in which to store their personal data and
settings information.

Jusr (User Shareable) This is a secondary hierarchy for user shareable data.
Sort of like a secondary root directory. It contains many similar subdirectories
as /7, though the contents are usually not as essential to system operations (in
particular, are not required for the system to boot).

/dev (Devices) This is where all of the special device files are located. This
contains the links to all of the devices (e.g. hard drives, cds, terminals, etc.)
connected to your system.

/var (Variable Data), This is where all of the ‘variable’ data on the system is
stored. This includes things like mail files, print jobs, and system logs.

/tmp (Temporary Data) This directory contains temporary space which can
be used by all users on the system. This directory is cleaned out regularly by
the system administrator, so don’t leave important things here.

/boot (Boot) This is where information and data used for the system boot
process is stored. It includes things like kernel images and boot loader configu-
ration.

/proc (Process) This is a virtual file system (it takes up no disk space) that
contains information about system hardware and any currently running pro-
cesses.

/etc (Et cetera) This is where all of the system configuration files are stored.
These files are usually all plain text and contain no binary data.

3.5 Navigation

Getting around the file system is accomplished by using the cd (change direc-
tory) command. cd takes on argument: the directory you want to change to. If
you use cd without an argument, it will take you to your home directory (the
value of $HOME). To find your current directory, use the pwd (print working
directory) command.

3.5.1 Absolute vs. Relative Path

When you specify a file, you must specify it relative to some path. The absolute
path is the path to the file with respect to the root directory. The relative
path is the path to the file relative to the current directory. For example, if my
current directory is /foo/bar/baz/ and I want to specify the file results.dat in
the data/ directory, the absolute path would be /foo/bar/baz/data/results.dat,
while the relative path would be data/results.dat.

If you want to specify the absolute path to a file, the path must begin with
a ‘/’. This tells the shell to begin looking in the root directory. If the path you
specify doesn’t start with a ¢/, the shell will assume you are giving a relative
path.

3.5.2 Special Directories: . and ..

(3]

Every directory in the filesystem contains two special directories: the ‘.” and
‘.. directories. These directories reference the current directory and the parent
directory respectively. This provides a way for you to reference the current
directory and parent directory without having to specify their absolute paths.
For example, if you wanted to restore a backup copy of your thesis from your
backup directory, you might do something like:

cp backup/thesis.tex .

The ‘..” directory provides a convenient way of moving around the directory
structure in addition to making file references easier. For example, if your cur-
rent directory is /opt/really-local/packackes/samba-2.2.12/bin and you
wanted to move to /opt/really-local/packackes/samba-2.2.12/etc, rather
than doing;:

cd /opt/really-local/packages/samba-2.2.12/etc

you could do something like:
cd ../etc

(For those who were curious about the difference between 1s -a and 1s -A but
were too lazy to look it up, using ‘-a’ shows you all hidden files, whereas using
‘-A’ shows you almost all hidden files, skipping ¢.” and ‘..")

3.5.3 The $PATH

After hearing that all files are specified relative to some path, the very perceptive
among you may have thought “wait... if the commands I type in are regular files
like everything else, why don’t I have to specify a path to them?” The answer
is: you are. If you want to explicitly specify the path to a command, you can
do so by using an absolute path, like:

aoaks@tsunami:~$ /bin/cat hello.txt
Hello World

or a relative path, like:

aoaks@tsunami:/bin$ pwd

/bin

aoaks@tsunami:/bin$./cat hello.txt
Hello World

So what’s happening when you don’t specify a path, like:

aoaks@tsunami:~$ cat hello.txt
Hello World

What command it that running? Well, when you specify a command without
giving any sort of path, the shell will try to find the command in the paths
stored in your $PATH environment variable. A typical $PATH variable looks like:

aoaks@tsunami:~$ echo $PATH
/usr/local/bin:/usr/local/sbin:/bin:/usr/bin:/usr/sbin:
/opt/mlocal/bin:/usr/bin/X11

(%]

As you can see, most of them are bin or sbin directories, delimited by a *:
(colon). When the shell gets a request to look up a command in the $PATH,
it tries each of these directories in sequence until it finds one that contains the
desired command. Its important to note that the shell will run the first match
it finds, so if there is a /usr/local/bin/cat and a /bin/echo, the shell will
run the one in /usr/local/bin. If for some reason you need to run a different
cat, you will need to explicitly specify the path to that cat. To find out where
exactly the program you would run is located, use the which command:

aoaks@tsunami:~$ which cat
/bin/cat

