System Administration for Beginners

Week 9 Notes
April 3, 2007

1 Introduction

So far we have learned enough such that given a fresh install of an operating
system, you would be able to turn into a complete Internet server. We have
gone over the components that are required for most web services, where and
how to obtain them, and you have a general idea of the factors to keep in mind
wen choosing components for your Internet server.

As much as you've learned, however, setting all of this up is only half of a
system administrator’s job. The other half is managing the server and insuring
that it remains secure. In this lecture and the one following, we will be taking
a look at the extra precautions necessary when there is more than one user on
a system and different methods to use when securing a system from local and
remote attacks.

So far we have worked on a server that have either one user, yourself, or
multiple trusted (hopefully) users, your project group members. We have not
dealt with security too much other than working with permissions to get services
running (chmod) and basic user security (sudo), mainly as a preventive measure
to stop yourself from doing something you might regret.

When dealing with servers that have multiple untrusted users, there are two
main ares that we want to focus on: resource sharing and security. This week,
we will go over resource sharing and providing a general overview of security
with regards to local users. Next week, there will be a more in-depth look at
security, especially with regards to remote users.

2 Resource Sharing

A perhaps common conception of servers, seen especially in movies, are huge
mainfraimes with unlimited resources, neat cabling, good cooling, etc. Unlike
The Matriz, unfortunately, real servers have a finite amount of physical resources
such as memory, processor power, and storage, as well as a finite amount of less
tangible resources such as bandwidth. Each of these resources cost money,
sometimes a one-time cost (like purchasing memory or more storage), otherwise
a contiuous cost (purchasing bandwidth and power). Thus, it is one of the jobs



of a system administrator to make the most of these resources and ensure that
they are shared fairly by all users.

The easiest solution to the problem of limited resources is not the purchase
of the biggest and fastest server possible. If you have taken a computer science
course, you may recall that an algorithm that takes n™ time does not double
in speed when you double the processing power. It is not cost-effective to
continuously purchase state of the art technology either. They will depreciate
in value and performance very quickly (much like cars). Bigger and faster servers
also have their own problems, physically. Most datacenters, for example, will
charge services fees based on the size and power requirements of a server. Faster
servers, besides a more expensive initial cost, will cost you more per month.
They will also run hotter and are generally more prone to hardware failure.

In the end, the only universal solution to the problem of limited resources is
careful monitoring and regulation by system administrators.

2.1 Resource Use and Abuse

Heavy resource usage can be justified or unavoidable. For example, if you are a
system administrator for a research group, you might be administrating a server
that performs complicated calculations continuously. The processor may always
be overloaded, which cannot be helped. If this is the case, then you have limited
solutions: optimize the calculation program, which may not always be possible,
or upgrade the hardware.

Heavy resource usage soon becomes abuse when users are using more re-
sources than needed, especially if the purpose of that server is not to perform
heavy calculations or handle that sort of load constantly. There are multitudes
of people who will abuse any freedom given. If you give users unlimited disk
space, there is a very hig probability that someone will load your server with
anything and everything they can find. It is then the system administrator’s
job to prevent such abuse.

The fuss about resource abuse is that running out of resources can result in
a loss of data or business. If a server’s hard drive space is exhausted, it will not
be able to store any new transactions or information from users. If a server has
used up its bandwidth, users will be unable to access the website hosted on that
server. This latter problem is very important, as it has spawned a new category
of attacks called Denial of Services (DoS) attacks, which online criminals use to
extort online businesses.

Furthermore, resource abuse can affect other servers or cause legal problems.
A user may abuse a server’s resources to perform a DoS attack on another server.
Not only does this waste the resources you purchased, but it could result in law
enforcement agencies seizing your hardware. Similarly, abusive users may have
taken over your server to host pirated data, which again drains resources and
presents legal problems.



2.2 Quotas

An approach to preventing resource abuse is to impose quotas. Quotas are limits
on measurable resources, such as disk space. UNIX provides multiple tools for
managing quotas, which you will be working with during the laboratory this
week.

Before you impose quotas on your users, you should develop a policy for
resource usage. Having a pre-written policy provides a good insurance policy
and helps you respond to disputes by users demanding additional resources
without justification.

Draft your policy so that most users have exactly or just less than the amount
of resources they need. In general, it is better to give less than what a user needs,
as it is relatively easy to increase quotas, while decreasing quotas after the fact
can result in technical and social problems.

Furthermore, resource usage tends to expand to fill a quota — if you give
users too much disk space, they will probably find a way to use it. Giving users
less resources than they need encourages them to use their resources wisely.

2.3 Accounting

Not all resources are managed with quotas. For example, processor usage and
bandwidth are two dynamic commodities that are difficult to manage with quo-
tas as they are either difficult to measure or have unpredictable usage patterns.

the best way to deal with these kinds of resources is to employ accounting,
which is just a fancy word for monitoring. UNIX provides tools for auditing
the amount of processor time and bandwidth that is used by a certain user or
website. This information is then recorded in a log that can be reaad by system
administrators. Since accounting deals with log file handling, we will take a
look at it next week, under security.

3 Security

The second issue that affects multiuser systems is security. If you are the only
user on a system, provided that you are the only one with access to it, you
can be rather lenient with permissions. For example, you might grant 777
permissions on all your files and programs. Such a practice should be avoided,
however, even on single-user systems as the compromise of a system could be
devastating. Even if a hacker was able to get a limited access account on your
system, they would be able to read and delete files with 777 permissions.

Assigning appropriate file permissions is extermely important on systems
with untrusted users. For example, a client may store all their customer infor-
mation, including credit card numbers, in a database file in their home directory.
If permissions are incorrectly set on this database, a malicious user on the sys-
tem could read the file and get access to this information.

While it is primarily the user’s responsibility to ensure that they have the
correct permissions on their files, it is also the system administrator’s responsi-



bility to routinely perform file permission audits and adjust them as necessary to
ensure the security of the system. find is particularly useful for these purposes
as you can search for files by permissions. As an example, the system admin-
istrators that manage the instructional servers at Soda Hall regularly scan files
for insecure files.

3.1 Access Control Lists

The file permissions that we have worked with so far have been rather crude.
At the moment, you are only able to set specific permissions for the owner and
group of a file, as well as provide a set of permissions for everyone else. With
proper organization of users into groups, it is possible to build a very effective set
of permissions. Unfortunately, such organization requires extensive planning, as
UNIX permissions that we’ve worked with only allow one owner and group per
a file or directory, so all the users that need access to a file or directory have
to be in the same group if they are to share the same permissions. For systems
where users are continually being added and removed, such planning is difficult
or impossible.

Most UNIX operating systems now support an extended form of file permis-
sions called Access Control Lists (ACL). ACLs allow users and system admin-
istrators to specify permissions for multiple owners and groups.

Do not become too dependent upon ACLs, though. They have been intro-
duced this late in the course because it is important to become comfortable using
regular UNIX permissions. You will find that in many cases, ACLs are really
unnecessary; regular UNIX permissions are actually quite flexible. Furthermore,
support for ACLs is not yet universal: the more popular UNIX versions and Mi-
crosoft Windows support ACLs, but some common tools do not support them,
such as tar. Even so, there are more technical differences between varying ver-
sions of ACLs. The type you may be used to will not necessarily carry over to
another system, while basic file permissions will.

3.2 Programs and their Privileges

In most operating systems, including UNIX-like operating systems, programs
have their own set of privileges. Programs run with the privileges of the user
who started them. If you execute a program, it will be able to read, write, or
execute any other file or directory for which you have read, write, or execute
permissions.

Last week, when you were configuring WordPress, you may recall that you
had to modify the permissions on your WordPress file so that it would be read
by anyone. You might haved noticed that this is rather insecure, since anybody
would have been able to get your database password, but such a configuration
is necessary because Apache, the web server, runs as its own user and group.
This user, www—data on Debian systems, is not privileged, so it does not have
access to any files or directories unless you grant explicitly grant it access with
permissions. If you had not changed the permissions of the configuration file



to allow reading by anybody, Apache would not have been able to read the
configuration file, and your installation of Wordpress would not have worked.

You can avoid this problem by using an ACL to specifically grant Apache
access to the configuration file. However, this is only one solution to the problem
of configuration for web services. Next week, a better solution will be covered,
which comes at the cost of slightly reduced system performance.

For those of you who have been paying close attention, you may be wondering
why Apache runs as the www-data user, even if you start Apache as root. Apache
refuses to run as root because running as root is dangerous, just as is working
as root. If a hacker manages to hack an Apache daemon running as root, they’ll
have root access to the system. Consequently, at the first chance possible,
Apache will attempt to become a non-privileged user (through a mechanism
similar to using su). When you start Apache as a normal user, Apache will
continue to run as the same user, since it’s already operating as an unprivileged
user, but if you start Apache as root, it’ll become www-data almost immediately.



