Advanced Unix System Administration
Spring 2007
Homework 3-4 Solutions

1. Networking on paper. Here’s an exercise to test your understanding of TCP/IP over
Ethernet.

a. Your company needs five different networks, four small networks of about 20
servers each, and a larger network of clients with addresses assigned by DHCP.
You have the IP address range 172.17.42.0/24 to work with (I know this is
RFC 1918 space — it’s an example). Suggest a way to divide up this netblock
into the networks you need.

One solution: use 172.17.42.0/27,172.17.42.32/27,172.17.42.64/27, and
172.17.42.96/27 for the servers and 172.17.42.128/25 for the clients. Each
of the server networks will have 30 usable addresses (27 bits for the network
address leaves 5 bits for the host address, which is 32 possibilities; the low
value is used to identify the network, whereas the high value is the broadcast
address), whereas the client network will have 126 addresses.

b. A computer on an Ethernet network with MAC address FF:FF:FE:09:42:A3
and IP address 172.17.42.37 sends the message Hello, world!\r\n via UDP
from port 51500 to a computer with MAC address FF:FF:FB:3D:28:9C and
IP address 172.17.42.58 on port 9. Write out a transcript of the Ethernet
frames resulting from this conversation. Assume the sender’s ARP cache is
empty at the beginning of the conversation.

This is a short conversation — three packets. First, the ARP broadcast looking
for 172.17.42.58:

Ethernet II frame

Destination: FF:FF:FF:FF:FF:FF (broadcast)
Source: FF:FF:FE:09:42:A3

Type: 0x0806 (ARP)

ARP packet

Hardware type: 0x0001 (Ethernet)
Protocol: 0x0800 (IP)

Opcode: 0x0001 (request)

Sender MAC: FF:FF:FE:09:42:A3
Sender IP: 172.17.42.37

Target MAC: 00:00:00:00:00:00
Target IP: 172.17.42.58

The reply to the ARP request is not broadcast:

Ethernet II frame

Destination: FF:FF:FE:09:42:A3
Source: FF:FF:FB:3D:28:9C
Type: 0x0806 (ARP)

ARP packet

Hardware type: 0x0001 (Ethernet)
Protocol: 0x0800 (IP)

Opcode: 0x0002 (reply)

Sender MAC: FF:FF:FB:3D:28:9C
Sender IP: 172.17.42.58

Target MAC: FF:FF:FE:09:42:A3
Target IP: 172.17.42.37

With the MAC address of the destination in hand, the message is sent as a
single UDP packet:

Ethernet II frame

Destination: FF:FF:FB:3D:28:9C
Source: FF:FF:FE:09:42:A3

Type: 0x0800 (IP)

IPv4 packet

Version: 4

Header length: 20 bytes

DSCP: 0x00

ECN: 0x00

Total length: 43 bytes

IPID: 32181 [could be anything]
Flags: 0x04 (DF bit set, MF bit clear)
Fragment offset: O

TTL: 64 [could be more or less, depending on the IP stack]
Protocol: 0x11 (UDP)

Source: 172.17.42.37
Destination: 172.17.42.58

UDP packet

Source port: 51500

Destination port: 9

Length: 23 bytes

Data: Hello, world!\r\n

. A computer on an Ethernet network with MAC address FF:FF:FE:09:42:A3
and IP address 172.17.42.37 initiates a TCP connection from port 51501 to a
computer with MAC address FF:FF:FB:3D:28:9C and IP address 172.17.42.58
on port 7. The computer on .37 sends the string Hello, world!\r\n to the
peer, which echos back the same message; the two computers then close the
connection. Write out a transcript of the Ethernet frames resulting from this

conversation. Assume the initiating host’s ARP cache already contains the
entry for the machine it wishes to talk to.

Because of the way the TCP teardown can work, there are a few different pos-
sibilities for what exactly happens during this conversation; here’s one. Note
that I haven’t used any TCP options here, which keeps the packets simpler; a
real conversation is likely to use at least selective acknowledgment and TCP
window scaling.

Ethernet II frame

Destination: FF:FF:FB:3D:28:9C

Source: FF:FF:FE:09:42:A3

Type: 0x0800 (IP)

IPv4 packet

Version: 4

Header length: 20 bytes

DSCP: 0x00

ECN: 0x00

Total length: 60 bytes

IPID: 51710 [could be anything]

Flags: 0x04 (DF bit set, MF bit clear)

Fragment offset: 0

TTL: 64 [could be more or less, depending on the IP stack]
Protocol: 0x06 (TCP)

Source: 172.17.42.37

Destination: 172.17.42.58

TCP packet

Source port: 51501

Destination port: 7

Sequence number: 1000 [subject to requirements on ISNs]
Acknowledgment number: O

Header length: 20 bytes

Flags: 0x02 (SYN)

Window size: 5840 [depends on TCP stack and link]

Ethernet II frame

Destination: FF:FF:FE:09:42:A3
Source: FF:FF:FB:3D:28:9C
Type: 0x0800 (IP)

IPv4 packet

Version: 4

Header length: 20 bytes

DSCP: 0x00

ECN: 0x00

Total length: 60 bytes

IPID: O [could be anything]

Flags: 0x04 (DF bit set, MF bit clear)

Fragment offset: 0

TTL: 64 [could be more or less, depending on the IP stack]
Protocol: 0x06 (TCP)

Source: 172.17.42.58

Destination: 172.17.42.37

TCP packet

Source port: 7

Destination port: 51501

Sequence number: 2000 [subject to requirements on ISNs]
Acknowledgment number: 1001

Header length: 20 bytes

Flags: 0x12 (ACK|SYN)

Window size: 5792 [depends on TCP stack and link]

From this point, we only describe source and destination IP addresses, sequence
and acknowledgment numbers, TCP flags, window sizes, and data for each
packet.

Source: 172.17.42.37
Destination: 172.17.42.58
Sequence number: 1001
Acknowledgment number: 2001
Flags: 0x10 (ACK)

Window size: 5856

At this point, the three-way handshake is complete, and a TCP connection
has been established. Notice the way the window size has grown — no packets

have been dropped, so TCP allows more data to be transferred before the next
ACK.

Source: 172.17.42.37
Destination: 172.17.42.58
Sequence number: 1001
Acknowledgment number: 2001
Flags: 0x18 (ACK|PSH)
Window size: 5856

Data: Hello, world!\r\n

Note that the sequence number for the ACK is reused. Sequence numbers are
assigned for each byte of data, since it is data transmissions that need to be
acknowledged; empty ACK packets need not be acknowledged, so they do not

need to take up sequence number space. (I incorrectly stated in class that
sequence numbers are assigned per packet; this has now been corrected in the
slides for March 7.) The PSH flag is set to tell the remote TCP stack to flush
its buffers to the application, since this is the logical end of a transmission; if
the transmission encompassed multiple packets, PSH would only be set on the
last of these.

Source: 172.17.42.58
Destination: 172.17.42.37
Sequence number: 2001
Acknowledgment number: 1016
Flags: 0x10 (ACK)

Window size: 5824

Notice the ACK number has jumped to 1016; sequence numbers are assigned
per byte of data, and our data was 15 bytes long. Once the conversation
starts, the empty ACK packet is strictly not necessary, as the packet can be
acknowledged by the next data packet, but most TCP stacks emit these.

Source: 172.17.42.58
Destination: 172.17.42.37
Sequence number: 2001
Acknowledgment number: 1016
Flags: 0x18 (ACK|PSH)
Window size: 5824

Data: Hello, world!\r\n

The server echos data back to the client.

Source: 172.17.42.37
Destination: 172.17.42.58
Sequence number: 1016
Acknowledgment number: 2016
Flags: 0x10 (ACK)

Window size: 5856

Source: 172.17.42.37
Destination: 172.17.42.58
Sequence number: 1016
Acknowledgment number: 2016
Flags: Ox11 (ACK|FIN)
Window size: 5856

The client is telling the server that it has no more data to send. Note that the
server can continue to send data to the client; this is known as a “half-open”
connection.

Source: 172.17.42.58
Destination: 172.17.42.37
Sequence number: 2016
Acknowledgment number: 1017
Flags: 0x11 (ACK|FIN)
Window size: 5824

FIN packets need to be acknowledged to complete the tear-down of the connec-
tion, so the ACK number has increased despite the fact that no further data
has been transmitted. The FIN flag is set to indicate that the server also has
no more data to send; again, a FIN from one side is not necessarily followed
immediately by a FIN from the other.

Source: 172.17.42.37
Destination: 172.17.42.58
Sequence number: 1017
Acknowledgment number: 2017
Flags: 0x10 (ACK)

Window size: 5856

This last ACK from the client completes the tear-down of the TCP connection
in both directions.

Notice the overhead from the TCP connection; what would have taken two
packets to say in UDP has taken 10 packets to say in TCP. TCP is therefore
frequently undesirable for conversations like this, consisting of short, discrete
messages; on the other hand, if transmitting larger streams of information, or
if reliability is an issue, the overhead is less of a problem.

2. Recursive DNS lookups. Resolve the following DNS queries by hand using dig
+norecurse:

e mail.Math.Berkeley.EDU IN A
e www.google.com IN A

e bigsur.steven676.net IN MX.

By “by hand”, I mean you get to do the recursion yourself, starting from the root
DNS servers. The -t option allows you to specify a record type, and @ is used to
specify a target DNS server. Include each dig command you used and the output.
Hint: one of the options to dig allows you to check your work quite easily.

The general idea here is that we query DNS servers recursively for what we want,
starting at the root; either the server will have a reply for us (in which case we’ll
have one or more answers), or it will give us a referral to a server that will know
more (no answers, but authorities in the response).

$ dig +norecurse @f.root-servers.net mail.Math.Berkeley.EDU

; <<3>> DiG 9.3.4 <<>> +norecurse Q@f .root-servers.net mail.Math.Berkeley.EDU
; (1 server found)

;5 global options: printcmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 55612

;; flags: qr; QUERY: 1, ANSWER: O, AUTHORITY: 8, ADDITIONAL: 8

;; QUESTION SECTION:
;mail.Math.Berkeley.EDU. IN A

;5 AUTHORITY SECTION:

EDU. 172800 1IN NS L3.NSTLD.COM.
EDU. 172800 1IN NS M3 .NSTLD.COM.
EDU. 172800 1IN NS A3 .NSTLD.COM.
EDU. 172800 1IN NS C3.NSTLD.COM.
EDU. 172800 1IN NS D3.NSTLD.COM.
EDU. 172800 1IN NS E3.NSTLD.COM.
EDU. 172800 1IN NS G3.NSTLD.COM.
EDU. 172800 1IN NS H3.NSTLD.COM.

;; ADDITIONAL SECTION:

A3 .NSTLD.COM. 172800 1IN A 192.5.6.32

C3.NSTLD.COM. 172800 1IN A 192.26.92.32
D3.NSTLD.COM. 172800 1IN A 192.31.80.32
E3.NSTLD.COM. 172800 1IN A 192.12.94.32
G3.NSTLD.COM. 172800 1IN A 192.42.93.32
H3.NSTLD.COM. 172800 1IN A 192.54.112.32
L3.NSTLD.COM. 172800 1IN A 192.41.162.32
M3.NSTLD.COM. 172800 1IN A 192.55.83.32

We haven’t gotten an answer, but we get a referral to the .edu DNS servers (ap-
parently *3.nstld.com) instead. In the interests of brevity, I'll omit further dig
output unless it’s otherwise interesting.

$ dig +norecurse Q@L3.NSTLD.COM mail.Math.Berkeley.EDU
[snip]
$ dig +norecurse QADNS1.Berkeley.EDU mail.Math.Berkeley.EDU

; <<>> DiG 9.3.4 <<>> +norecurse QADNS1.Berkeley.EDU mail.Math.Berkeley.EDU
; (1 server found)
;5 global options: printcmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 46569
;5 flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 6, ADDITIONAL: 6

;5 QUESTION SECTION:
;mail.Math.Berkeley.EDU.

;; ANSWER SECTION:
mail.Math.Berkeley.EDU.

;; AUTHORITY SECTION:
Berkeley.EDU.
Berkeley.EDU.
Berkeley.EDU.
Berkeley.EDU.
Berkeley.EDU.
Berkeley.EDU.

;; ADDITIONAL SECTION:
ns.v6.Berkeley.EDU.
ns.v6.Berkeley.EDU.
2001:468:e21:0:2a0:c9ff:
dns2.ucla.EDU.
adns1.Berkeley.EDU.
adns2.Berkeley.EDU.
phloem.uoregon.EDU.

That gets us our answer:

mail.Math.Berkeley.EDU.

Similarly, by doing the following, we find:

10800

172800
172800
172800
172800
172800
172800

172800
172800

IN

IN
IN
IN
IN
IN
IN

IN
IN

feal:110d

21600
172800
172800
86400

10800

IN
IN
IN
IN

IN

IN

NS
NS
NS
NS
NS
NS

AAAA

=

169.229.58.57

phloem.uoregon.EDU.
ucb-ns .NYU.EDU.
adns1.Berkeley.EDU.
adns2.Berkeley.EDU.
dns2.ucla.EDU.
ns.v6.Berkeley.EDU.

128.32.136.6

164.67.128.2
128.32.136.3
128.32.136.14
128.223.32.35

169.229.58.57

$ dig +norecurse @f.root-servers.net www.google.com

[snip]

$ dig +norecurse @C.GTLD-SERVERS.NET www.google.com

[snip]

$ dig +norecurse @nsl.google.com www.google.com

; <<3>> DiG 9.3.4 <<>> +norecurse @nsl.google.com www.google.com

; (1 server found)

;5 global options: printcmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 37278
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 7, ADDITIONAL: 7

;5 QUESTION SECTION:
;WWwW.google.com. IN A

;; ANSWER SECTION:
wWW . google. com. 604800 1IN CNAME www.l.google.com.

;5 AUTHORITY SECTION:

1.google.com. 86400 IN NS a.l.google.com.
1l.google.com. 86400 IN NS b.1l.google.com.
1l.google.com. 86400 IN NS c.l.google.com.
1.google.com. 86400 IN NS d.l.google.com.
1.google.com. 86400 IN NS e.l.google.com.
1.google.com. 86400 IN NS f.1l.google.com.
1l.google.com. 86400 IN NS g.1l.google.com.
;; ADDITIONAL SECTION:

a.l.google.com. 86400 IN A 209.85.139.9
b.1l.google.com. 86400 IN A 64.233.179.9
c.l.google.com. 86400 IN A 64.233.161.9
d.1l.google.com. 86400 IN A 66.249.93.9
e.l.google.com. 86400 IN A 209.85.137.9
f.1l.google.com. 86400 IN A 72.14.235.9
g.l.google.com. 86400 IN A 64.233.167.9

$ dig +norecurse Qa.l.google.com www.l.google.com

[snip]

Notice we get a CNAME record as a reply; RFC 1034 then tells us we should

restart the query at the domain name of the CNAME reply, with the query name
changed to the one provided us in the CNAME reply. Hence we follow the query of
nsl.google.com for www.google.com by a query of a.1.google.com for www.1.google.com.
The reply returned by a nameserver performing this query will include both the
CNAME record and the A records eventually returned, so the answer here is

WWw.google.com. 604800 1IN CNAME www.l.google.com.
www.l.google.com. 300 IN A 72.14.253.103
www.l.google.com. 300 IN A 72.14.253.104
www.l.google.com. 300 IN A 72.14.253.99
www.l.google.com. 300 IN A 72.14.253.147

The multiple A records serve as a DNS round-robin.

9

We proceed as follows for the last record to be looked up:

$ dig +norecurse Q@f .root-servers.net -t MX bigsur.steven676.net
[snip]

$ dig +norecurse @H.GTLD-SERVERS.NET -t MX bigsur.steven676.net
[snip]

$ dig +norecurse @nsl.sitelutions.com -t MX bigsur.steven676.net

; <<>> DiG 9.3.4 <<>> +norecurse @Onsl.sitelutions.com -t MX
bigsur.steven676.net

; (1 server found)

;; global options: printcmd

;3 Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 58458

;; flags: qr aa; QUERY: 1, ANSWER: O, AUTHORITY: 1, ADDITIONAL: O

;5 QUESTION SECTION:
;bigsur.steven676.net. IN MX

;3 AUTHORITY SECTION:
steven676.net. 3600 IN SOA nsl.sitelutions.comn.
steven676.myrealbox.com. 75 28000 7200 604800 5

Notice the return status of NXDOMAIN here; the server is indicating that the requested
record does not exist. The SOA record for the domain is returned as an authority
answer.

The useful option referred to in the hint is the +trace option to dig, which performs
a similar automated recursive lookup.

. Idle scan. TCP initial sequence numbers aren’t the only numbers that are prob-
lematic if they are predictable. There’s an interesting technique called “idle scan”,
implemented in recent versions of nmap, that relies on a “zombie” host whose IPID
numbers are predictable.

a. How does this scan work? Why does the zombie host have to be idle? Where
do the predictable IPID numbers come in?

The scanning host first sends a packet to the zombie, and looks at the reply to
collect its current IPID number. The scanning host sends a TCP SYN packet
with source address forged to be that of the zombie host to the scan target. If
the port is open on the scan target, the target will reply to the zombie with
a SYNJACK, which will cause the zombie to reply with an RST packet; this
causes the IPID number of the zombie’s packets to increase in the predictable
manner previously detected. If the port is closed, an RST will be sent to the

10

zombie, which silently drops the packet; the zombie’s IPID number does not
increase in this scenario. Hence, by querying the zombie’s IPID number before
and after this sequence, we may determine whether or not the queried port
was open.

This scheme breaks down if the zombie has any traffic other than the scan traf-
fic, because increases in the IPID number will then not necessarily be correlated
to whether the port on the target is open or not.

b. From where does the scan appear to be coming from, the scanning host or the
zombie? Why? Why might this be a problem if a zombie on your network is
being used to scan one of your machines?

The scan appears to be coming from the zombie, since this is the source address
the scan target sees. This means that the scan results reflect the perspective
of the zombie; if an attacker can find a zombie on your network, then, he can
scan your machines as if he were inside your network, thus possibly evading
some of your firewall rules.

c. What can you do to prevent idle scans from being launched from inside your
network?

Since conducting an idle scan depends on the ability to send packets with
spoofed source addresses, you can prevent idle scans of hosts outside your net-
work from being launched inside your network by implementing egress filtering
of packets with clearly spoofed source addresses (i.e. source addresses outside
your network).

4. Secure temporary file creation. This is another one of those problems that turns out
to be annoyingly hard, and comes back to bite us again and again.

a. Have a look at tmpfile3.c, which attempts to create a temporary file securely.
Compile and run it, and watch its behavior (perhaps with strace). What’s
wrong with this approach? (Hint: this works fine on a single-tasking system.)
Optional: Construct an exploit for this.

The trouble stems from this sequence:

/* Check to see if our chosen filename exists yet */
if (lstat(filename, &filestat) != -1 || errno != ENOENT) {
/* Some error handling code */

}
/* Create the temporary file, permissions 0600 */
if ((fd = open(filename, O_WRONLY|O_CREAT, 0600)) == -1)

return 1;

This translates into the following sequence of syscalls, under normal circum-
stances:

11

1stat("/tmp/tmpfile3.mRSOK5", 0x7fff4251fd90) = -1 ENOENT
(No such file or directory)
open("/tmp/tmpfile3.mRSOK5", O_WRONLY|O_CREAT, 0600) = 3

There’s nothing to guarantee that the situation stayed the same between the
1stat () and the open(); in other words, we could very well have two processes
A and B doing the following:

A: 1stat("/tmp/tmpfile3.mRSOK5", 0x7fff4251fd90) = -1 ENOENT
(No such file or directory)
B: symlink("/path/to/victim", "/tmp/tmpfile3.mRSOK5")

=0
A: open("/tmp/tmpfile3.mRSOK5", O_WRONLY|O_CREAT, 0600) =

3

A is now working on a file that it didn’t intend to work with; this could allow
an attacker to cause it to read arbitrary data of his choosing, or cause it to
write to an arbitrary file. If open() is called with the 0_TRUNC flag, the victim
file is now empty, its data being clobbered; one could easily see this being a
problem when A is running as root and the victim is, say, /etc/passwd.

This type of problem, where the exploit depends on fitting in an action between
two or more other actions, is known as a race condition — the attacking process
B is, in effect, “racing” process A to get the symlink () call in before A executes
its open(). When the system isn’t under load, the window of opportunity for
exploit is often extremely short; thus attackers will frequently generate system
load, hoping to slow down process A and thus make exploiting the bug easier.

. Look at tmpfiled.c. What’s changed from tmpfile3.c? Compile and run it,
and watch its behavior with strace. Why does this work (on POSIX-compliant
filesystems)? Is there something superfluous in what this program does?

The big difference here is that open is now called with the 0_EXCL flag:

1stat("/tmp/tmpfile4.1VJuus", 0x7fffc6c9d3a0) = -1 ENOENT
(No such file or directory)
open("/tmp/tmpfile4.1VJuus", O_WRONLY|O_CREAT|0O_EXCL, 0600) = 3

POSIX guarantees that open() will fail to create a file if 0_EXCL is specified
and the filename already exists.

We noted already that the 1lstat() is ineffective in ensuring that the file
doesn’t exist already; hence there’s no real point in calling it. An ltrace
-S of tmpfiled reveals that this 1stat () is being performed by mktemp ().

. You may have gotten a warning to the effect that mktemp() is dangerous,
and that mkstemp() or tmpfile() should be used instead. In naive applica-
tions, such as tmpfile3.c, mktemp () is indeed dangerous, though tmpfiled.c
demonstrates a correct use (though this could still be vulnerable if the im-
plementation of mktemp() is bad, as on many historic Unixes). Watch the
execution of tmpfileb, which is tmpfile4 modified to use mkstemp() (as

12

modern practice recommends), with strace. What (if anything) does it do
differently? Also watch the execution of the mktemp command, which (along
with tempfile) is the recommended way of creating temporary files from shell
scripts. Does it work any differently from tmpfile4 and tmpfile5?

The interesting part of the strace output for tmpfile5 is this:
open("/tmp/tmpfile5.FBOS9U", O_RDWR|O_CREAT|O_EXCL, 0600) = 3

Note that mkstemp () doesn’t bother to do the superfluous 1stat (). An strace
of mktemp reveals that it does the same thing as tmpfile5 — very possibly
because it calls mkstemp () to create the temporary file.

. On POSIX filesystems, the methods used by tmpfile4 and tmpfileb are suf-
ficient to guarantee that nothing bad will happen when a temporary file is
opened. Why jump through hoops to obtain a unique, difficult-to-guess file-
name, in that case? FExamine tmpfile6.c. For some applications, this is
acceptable (indeed, it is occasionally necessary to create files in world-writable
directories with predictable names, such as lock files); when might this be a
problem, and why?

Choosing a predictable name causes a problem if the application insists on
having the temporary file created with that name; an attacker would be able to
cause a denial-of-service condition by preventing the application from creating
its temporary file.

. Over NFS (which isn’t POSIX-compliant), the method of tmpfile6.c is in-
sufficient to guard against a symlink attack. (tmpfile4.c and similar are also
theoretically vulnerable, but as they choose difficult-to-guess temporary file
names, conducting such an attack is hard; this is another good reason to avoid
predictable temporary file names.) Look at tmpfile7.c, which creates a pre-
dictable file name in an NFS-safe manner. What’s changed? Why does this
work? Note: These issues mean that it’s probably a good idea to avoid having
/tmp and /var/tmp on NFS if at all possible; while applications creating lock
files are generally aware of these issues, other users of /tmp may not be quite
so clued in.

tmpfile7 first creates a hopefully unique name, then creates a hard link to
the desired name (which is predictable, since it’s based on the program’s PID)
and removes the first name:

/* Select a temporary file name */
if (!(temp_filename = mktemp(temp_filename)))
return 1;

/* Create the temporary file, permissions 0600 */

if ((fd = open(temp_filename, O_WRONLY|O_CREAT|O_EXCL, 0600)) == -

perror("File creation failed");

13

DA

return 1;

/* Create a hard link from our random filename to the desired one */
if (link(temp_filename, filename) == -1) {
/* Weird NFS error handling logic */
+
/* Remove the random name, leaving us with just the desired one
* Remember this doesn’t affect the open file descriptor */
unlink(temp_filename) ;

This leads to the following sequence of syscalls, under normal circumstances:

lstat("/tmp/tmpfile7.q3Mbkk", 0x7fff6da7c0e0) = -1 ENOENT

(No such file or directory)
open("/tmp/tmpfile7.q3Mbkk", O_WRONLY|O_CREAT|0_EXCL, 0600) = 3
link("/tmp/tmpfile7.q3Mbkk", "/tmp/tmpfile7.6424") = 0
unlink("/tmp/tmpfile7.q3Mbkk") =0

This is safe (or as safe as possible over NFS, anyway — it’s possible that someone
could guess our temporary file name between the 1stat() and the open())
because 1ink() is atomic and always fails if the target name already exists,
even on NFS, thus giving an attacker no chance to interpose.

The “weird NFS error handling logic”, by the way, is due to another oddity of
the NFS protocol:

/* It’s possible that link creation succeeds, but that the NFS
* server crashes before it can return success to us; hence we
* check the link count to see if it’s increased */

if (fstat(fd, &filestat) == -1) {
unlink(temp_filename) ;
return 1;

}

if (filestat.st_nlink !'= 2) {
fprintf (stderr, "Link creation failed\n");
unlink(temp_filename) ;
return 1;

¥

5. An exercise in setuid/setgid design — designing a secure local file sharing solution.
Suppose the users on your system want a way to copy files amongst themselves,
except that (1) you want to be able to place restrictions on what can be copied
between users and (2) your users want to be able to place restrictions on what can
be copied to their home directories. Specifically, assume that these restrictions are

14

implemented as shell scripts (or other executables) that are run on each file to be
copied.

a. Design a system using a single binary to securely perform this task (i.e. write
down, in detail, the steps that such a system would take while copying a file
from one user to another). Your security model may require the creation of
new system users, if appropriate.

There are many different ways of doing this; one possible method is to create
a setuid root binary that does the following:

i. Forks a child process, which uses setuid() to change to the calling user
and calls the shell scripts implementing system-wide and per-user policies.
The parent wait ()s for its child to finish.

1i. Checks the return status of its child to determine whether or not the file
passed policy checks. If not, exit immediately.

iii. Opens the file for reading.

iv. Uses setuid() to change to the user receiving the file.

v. Opens the output file for writing.

vi. Copies the contents of the file to the appropriate location.

Notice that policy checks are run as the calling user, limiting the usefulness
of attempting to exploit the policy checking scripts; this does have the side
effect of requiring that the scripts be readable by all users allowed to invoke
the binary, though with some further cleverness this restriction can be evaded
somewhat. The amount of time spent running as root is kept to an absolute
minimum.

b. Design a system to perform this task as securely as possible. You may use
as many binaries and/or running daemons as you think appropriate. Your
security model may require the creation of new system users, if appropriate.
Again, there are many different ways of doing this. One approach is to split up
the binary above into two separate ones, a frontend that’s setgid to a specific
group, and a backend that’s setuid root and only executable by that group.
The delivery proceeds as follows:

1. The frontend is invoked.

ii. The frontend calls setegid() to temporarily set its effective GID to its
real GID (the GID of the calling user).

iii. The frontend forks a child process (which, since the effective GID is dif-
ferent, will not inherit the privileged group), then calls the shell scripts
implementing system-wide and per-user policies. The parent wait ()s for
its child to finish.

iv. The frontend checks the return status of its child to determine whether or
not the file passed policy checks. If not, exit immediately.

15

v. The frontend calls setegid() to set its effective GID to the saved GID
(the privileged GID).
vi. The frontend calls the backend.
vii. The backend opens the file for reading.
viii. The backend uses setuid() to change to the user receiving the file.
ix. The backend opens the output file for writing.
x. The backend copies the contents of the file to the appropriate location.

The elaborate dance that the frontend does is to ensure that the policy shell
scripts are never invoked with the privileged group, which would allow them
to possibly be exploited to call the backend to deliver the file. In this design,
the amount of privilege granted, the amount of code running privileged, and
the amount of time spent running privileged are all kept to a minimum.

Another possibility involves having the backend run as a daemon reading out
of a queue which is only writable by the privileged group. The policy checks
could also be implemented as daemons.

¢. Which design is more secure? Why?

The multi-binary design reduces the amount of code that could potentially be
run as root, and is therefore a more secure design.

6. Setting up a chroot () jail. While not foolproof, a chroot () jail can help improve
the security of a service by making an attacker’s life more difficult. Here, you get
to set up chrooting for some programs; while they don’t do much useful, they could
potentially be run out of inetd in their given forms.

a. Log in to your container and have a look at chrootl.c. Compile and run
(you’ll need to be root to run, as the use of chroot() is restricted to root),
and watch execution with strace. Why is the chdir() after the chroot ()
necessary? Optional: For bonus points, why do we need to drop privileges?

The chdir() is necessary because chroot () does not necessarily change the
working directory of the process (and definitely doesn’t on Linux and Solaris);
hence, unless the process’s current working directory is already under the
target directory, it will end up outside the chroot() jail when chroot() is
called. This makes it trivially easy to break out of the jail — repeated calls of
chdir("..") will get us to the root of the real directory tree.

Dropping privileges is necessary because it is possible for a privileged program
to break out of a chroot() jail. Consider the following sequence:
i. Program creates a directory temp under its current working directory.

ii. Program chroot ()s into temp (this requires privileges). At this point, the
current working directory is outside the process’s root directory.

16

iii. Program repeatedly does chdir("..") to move up in the directory tree,
eventually to the real root directory; it can do this, since its current work-
ing directory is outside the supposed root directory.

iv. Program calls chroot(".") to change its root to the real root directory.

(It’s a bit more complicated if chroot () changes the current working directory,
but not impossible.) By dropping privileges, we ensure that the process cannot
use chroot () to do this.

b. chroot2.c omits the built-in chrooting of chrootl.c. Compile it, and set up
an environment in /chroot in which you can run it with the chroot command.
Hint: you’ll need to copy some files into /chroot; 1dd and strace should help
you figure out which ones. In general, you want to keep a chroot as empty as
possible, to limit the possibilities an attacker has inside.

Besides the program itself, you only need two files in your chroot () jail, the
dynamic linker and the C library. On an AMD64 Linux box, that means
/1ib64/1d-1inux-x86-64.s0.2 and /1ib/libc.so.6.

c. chroot3.c and chroot4.c are identical, except that chroot4.c has built-in
chrooting, while chroot3.c does not. Set up an environment in /chroot in
which chroot4 runs and produces identical output to chroot3 run in the main
filesystem namespace.

chroot3 and chroot4 have quite a few dependencies. They look for the sys-
tem’s canonical hostname using the Name Service Switch, so you’ll need at
least /1ib/libnss_files.so.2 and /etc/hosts, and possibly other files as
well if you need other name services than flat files to get your system’s canon-
ical hostname (this shouldn’t have been the case on our vservers). They
also invoke /bin/date, which has some interesting dependencies — it links
/1ib/libpthread.so.0 and /1ib/librt.so.1 in addition to the usual dy-
namic linker and C library, and needs /etc/localtime to get the timezone
right.

This is a good example of how a chroot () jail quickly gets more cluttered as
the program being jailed gets more complicated. As the security benefit of the
jail is reduced as it gets more populated, whether a program is worth chroot ()
jailing needs some consideration.

7. Packet sniffing. Optional. Go capture some packets on your favorite network.
Analyze the traffic streams, and point out security weaknesses. Suggest ways to
improve the security of the traffic going over the network.

8. Forensic analysis. Optional. Try problems 1-7 of the Honeynet Project’s Forensic
Challenge <http://www.honeynet.org/challenge/>, except that I don’t expect
you to disassemble the malware to figure out what it does. This is an old challenge,
and the image represents a fairly out-of-date system, but the techniques still apply
in investigating break-ins today.

17

See the Honeynet Project’s analysis:

<http://www.honeynet.org/challenge/results/dittrich/>

18

